
www.manaraa.com

SmartComposition: Enhanced Web Components for a

Better Future of Web Development
Michael Krug

Department of Computer Science
Technische Universität Chemnitz

Chemnitz, Germany

michael.krug@informatik.tu-chemnitz.de

Martin Gaedke
Department of Computer Science
Technische Universität Chemnitz

Chemnitz, Germany
martin.gaedke@informatik.tu-chemnitz.de

ABSTRACT

In this paper, we introduce the usage of enhanced Web

Components to create web applications with multi-device

capabilities by composition. By using the latest developments of

the family of W3C standards called “Web Components” that we

extent with dedicated communication and synchronization

functionality, web developers are enabled to create web

applications with ease. We enhance Web Components with an

event-based communication channel, which is not limited to a

single browser window. With our approach, applications using the

extended SmartComponents and an additional synchronization

service also support multi-device scenarios. In contrast to other

widget-based approaches (W3C Widgets, OpenSocial containers),

the usage of SmartComponents does not require a dedicated

platform, like Apache Rave. SmartComponents are based on

standard web technologies, are natively supported by recent web

browsers and loosely coupled using our extension. This ensures a

high level of reuse. We show how SmartComponents are

structured, can be created and used. Furthermore, we explain how

the communication aspect is integrated and multi-device

communication is achieved. Finally, we describe our

demonstration by outlining two example applications.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures. D.2.13

[Software Engineering]: Reusable Software. C.2.4 [Computer-

Communication Networks]: Distributed Systems - Client/server,

distributed applications.

Keywords

Web Components, HTML5, multi-platform web applications,

distributed multi-device web applications, web application

development, mashup, composition, reusable components.

1. INTRODUCTION
Web application development lacks simple reuse of often used

HTML/JS constructs. In the last years, with the rapid

advancement of JavaScript, many widget-like components were

provided as JS libraries or snippets that can be applied to various

standard HTML elements. Those standard HTML elements

(mostly DIV elements) are used as a container to host a lot of

dynamically created HTML elements. Common examples would

be image slideshows/lightboxes, map sections or AJAX forms.

We observed several problems with those approaches: first of all,

those components cannot be used directly in the HTML code.

You have to add a placeholder element and apply some JavaScript

code on it. Secondly, they often have dependencies and are

complicated to configure. Configuration in the markup code is

often not possible and you have to use a JSON object within a

function call as initial configuration. Furthermore, the

components are created in the same DOM (Document Object

Model) tree as the document. This can lead to a lot of conflicts if

there are duplicated IDs or CSS rules that accidentally apply to

child elements. In summary all these aspects and issues mean that

developing state-of-the-art web applications becomes a difficult

and error prone task especially for inexperienced developers.

A use case, which most of those JS components do not tackle, is a

mashup-like scenario, where composing multiple components that

work together creates the desired application. Those mashup

scenarios require a way for the components to exchange pieces of

data. For other widget approaches, like W3C Widgets1 or

OpenSocial containers2, there are developments that provide inter-

widget communication [4]. The integration of OpenAjax Hub3

into Apache Rave4 is such an approach. Unfortunately, these

widget types need to be deployed and hosted in platforms like

Apache Rave or Apache Shindig5 and cannot be used in standard

HTML websites or applications. To an increasing degree, users

are using more than one device on regular basis. Not only single

users are working with multiple devices, also multiple users

(teams) are working on collaborative tasks using more and more

devices in parallel. Therefore, web applications should support the

combination of multiple – especially mobile – devices into one

consistent user experience. We call these applications distributed

web applications. They are defined as applications that can be

used on multiple devices and that work on a shared context at the

same time. There are existing developments regarding distributing

user interfaces like the DireWolf framework [1], which extends

Apache Shindig and OpenSocial widgets. Unfortunately, as stated

before, they are limited to be used in special portal environments.

1 http://www.w3.org/TR/widgets/
2 http://opensocial.atlassian.net/wiki/display/OSD/Specs
3 http://www.openajax.org/member/wiki/

OpenAjax_Hub_2.0_Specification
4 http://rave.apache.org/
5 http://shindig.apache.org/

Copyright is held by the International World Wide Web Conference

Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to

the author's site if the Material is used in electronic media.

WWW 2015 Companion, May 18–22, 2015, Florence, Italy.

ACM 978-1-4503-3473-0/15/05.

http://dx.doi.org/10.1145/2740908.2742832

207

www.manaraa.com

Our approach aims to support developers in creating distributed

web applications by the composition of predefined platform-

independent components that are able to communicate in one

application context as well as across multiple devices. Therefore,

we propose to use the new set of W3C standards called Web

Components as the new basic technique for creating widget-like

components. Additionally we provide an extended Web

Component prototype with new communication features as well

as an optional synchronization service that seamlessly integrates

into the application and provides data synchronization between

multiple devices.

2. SMARTCOMPOSITION APPROACH
Our approach is based on the idea of creating web applications by

composition. In [3] we proposed a component-based architecture

for multi-device web applications. We use the presented ideas to

create a prototypical implementation by exploiting the Web

Components technologies. Our implementation uses only client-

side JavaScript. The major benefit of using the proposed

technologies for creating modern widgets is that no runtime

environment or portal software is needed to host such composed

applications. This could have a large impact since developers can

also easily integrate such components in common content

management systems like WordPress, Drupal or Joomla, as well

as in any other HTML5 based website.

Web Components consist of four new W3C web standards:

 Templates6, which define chunks of markup that are inert but

can be activated for use later.

 Custom Elements7, which let authors define their own

elements, with new tag names and new script interfaces.

 Shadow DOM8, which encapsulates a DOM subtree for more

reliable composition of user interface elements.

 HTML Imports9, which define how templates and custom

elements are packaged and loaded as a resource.

New components can be easily integrated in a website by using

the new HTML5 import statement, which uses the <link> tag to

load external definition files (see Listing 1). The structure and

content of the definition file is stated later. After the import of the

component resource file you can instantly use the custom element

tag in your HTML markup. Web Components are registered as

new HTML elements. Thus, you can use them in the same ways as

other standard elements. Configuration is possible through

attributes or child elements. In our SmartComposition approach, a

SmartComponent is a mixture of W3C Web Components

technologies and extensions for a systematic composition

transcending device and platform boundaries. There are the

following three parts defining a SmartComponent (cf. Listing 2):

Firstly, the template, which specifies the basic look and HTML

structure of the new component. The template element contains

markup that is defined for later usage. The content of the template

element is parsed by the parser, but it is inactive and not rendered.

The content of the template can be accessed as a document

fragment through its “content” property. Using a <content> node

6 http://w3.org/TR/html5/scripting-1.html#the-template-element
7 http://w3.org/TR/custom-elements/
8 http://w3.org/TR/shadow-dom/
9 http://w3.org/TR/html-imports/

in the template definition, you can set up an insertion point for

child elements of the component markup that otherwise would be

hidden by the shadow DOM. This is used by the later shown

image slideshow example. The content of the component itself is

inserted into a shadow DOM. The shadow DOM is an adjunct tree

of DOM nodes. This subtree can be associated with an element,

but does not appear as a child node of the element. Instead the

subtree forms its own scope. Due to the different scope of the

shadow DOM, the styles, names or IDs of elements in the root

document do not interfere with the definitions in the component.

Secondly, there is an optional style section, where you can define

the look of the elements of the component. The CSS @import

statement is supported to reuse existing style sheet definitions. To

address the custom element that is hosting the component’s

content, a new pseudo-class called “:host” is provided.

The third part covers the dependencies and actual program code.

New components are defined using a helper method that we

created to automate all necessary steps to create a custom element

and setting up event bindings. Custom elements are new types of

DOM elements that can be defined by authors, are stateful DOM

objects and provide script interfaces. We are using prototype

inheritance to extend the HTMLElement with additional

functionality. After the call of the method the element with the

stated name is registered and can be used in the markup.

Loosely coupling of components is very important to ensure

<html>

 <head>

 <link rel="import" href="component.html">

 </head>

<body>

 <smart-component some-attr="some-value">

 <shadow-root> /* Not visible as child */

 <h1>Some Widget</h1>

 <p></p>

 </shadow-root>

 </smart-component>

</body>

</html>

Listing 1: Usage of Web Components in HTML5 websites

/* Template definition */

<template>

 <h1>Some Widget</h1>

 <p></p>

</template>

/* Style rules */

<style type="text/css">

 h1 { … }

</style>

/* Web Components Extension */

<script src="Helper.js"></script>

/* Optional for multi-device sync * /

<script src="SynchronizationService.js">

</script>

<script>

(function() {

 var smartComponent =

 createWebComponent('smart-component');

 smartComponent.created = function() { … };

 smartComponent.attached = function() { … };

 smartComponent.detached = function() { … };

 smartComponent.handleMessage = function() {

 /* Gets called when message on subscribed

 topic was published */

 };

}();

</script>

Listing 2: Definition file of an enhanced Web Component

208

www.manaraa.com

simple reuse and enable new compositions. Therefore, to enable

message exchange between our SmartComponents we propose an

event-driven communication channel using a topic-based publish/

subscribe mechanism. A simplified overview of the inter-

component and inter-device communication architecture of the

SmartComposition approach can be seen in Figure 1. Components

can subscribe to topics they are interested in and can publish

information by posting messages to the event-driven bus. The

publish/subscribe message bus is implemented using the HTML5

Web Messaging API. The API provides a function to post a

message to a given window. Messages can be structured objects,

e.g. nested objects and arrays, can contain JavaScript values

(strings, numbers, dates, etc.) and certain data objects. To receive

a message the component has to bind an event listener to the

“message” event. By using those two methods and by giving the

message a predefined structure, containing the topic and the data,

we achieve a topic-based and event-driven communication

channel, which sets the basis for inter-component communication

and enables loosely coupled composition.

Furthermore, to provide developers with the opportunities to

create multi-device-enabled web applications, we present a

WebSocket-based synchronization service. To ensure a hassle-free

reuse of our components, our approach proposes a stand-alone

solution with no dependencies and side-effects on other

components. The synchronization service consists of two parts.

One part on the client side and one part hosted at a web server.

The client-side component is implemented as a custom JavaScript

object. It captures all events on the previously described

publish/subscribe message bus and sends them to the server-side

component. When the client-side component receives a message

from the server, it sends it back to the local publish/subscribe

message bus and the local components will receive the events. We

are using the WebSocket protocol10 for the client-server

10 https://tools.ietf.org/html/rfc6455

communication. This provides us with a full-duplex, low-latency

communication channel using standard web technologies. The

server-side component is a WebSocket server, which analyses the

received messages and broadcasts them to groups of connected

devices. We call those groups “sessions”. The term “connected

devices” is defined as: devices using the same synchronization

endpoint that share the same session identifier, i.e. context. One

major advantage of our synchronization service is that no

reconfiguration of existing components is necessary for multi-

device communication. Since the service is working like a hook,

all messages sent by the components are captured without

changing the code or configuration. In the next chapter we present

the demonstration of our proposed implementation.

3. DEMONSTRATION
To demonstrate our approach we show how easy it is to create

interactive, multi-device web applications with the use of our

enhanced Web Components. We show a working prototype of the

SmartComposition approach using two demos: The first one

covers a common use case. We show an image slideshow that is

implemented as a SmartComponent and is able to exchange data

with other components. This, the slideshow could be controlled

by another SmartComponent. By using our presented

synchronization service, this controlling component can also be

used on another device. You can even have the same slideshow in

Figure 1: Simplified inter-component and inter-device communication architecture

<link rel="import" href="slider.html">

<link rel="import" href="control.html">

<smart-slider-component>

</smart-slider-component>

<smart-ctrl-component></smart-crtl-component>

Listing 3: Slideshow implemented with Web Components

209

www.manaraa.com

a synchronized state on a second device. As you can see in Listing

3, the markup of the image slideshow is noticeably clean and

readable, without any cluttering from inline JavaScript or any

HTML elements that are used for implementing the sliding

functionality. You only add the images that should become part of

the slideshow. The smart component for control has an even

simpler markup.

Online Demonstration – Image Slideshow: http://vsr-demo.

informatik.tu-chemnitz.de/smartcomposition/slideshow/

Figure 2: Image slideshow exploiting multi-device capabilities

The second demo is more complex. We used our

SmartComposition approach to implement a distributed media

enrichment application. This demo shows a mashup-like scenario,

which was previously discussed and implemented but without the

usage of Web Components in [2]. We created different kinds of

new SmartComponents. Most of them gather data from various

web services regarding a topic or keyword to display information

that can be useful while watching a video. The video is played by

a special video component that posts messages containing

metadata at specific timestamps. This is done by exploiting the

TextTrack-API and an attached VTT subtitles file containing

time-based metadata ‒ in this case a transcript of the video. Parts

of the transcript are published using a specific topic that is

subscribed by a component that extracts keywords using statistical

algorithms and natural language processing technologies. The

extracted keywords are again published to the bus with different

topics based on determined categories. To visualize information

about those topics, we implemented components that catch data

from, e.g. Twitter, Flickr, Google Maps, Google Images and

Wikipedia. The mashup of components is as simple as adding new

elements to the HTML document (see Listing 4).

To proof the multi-device capabilities of our solution, we show

that SmartComponents can display different kinds of information

synchronized on multiple devices, and that they can even be

moved between devices.

Online Demonstration – Media Enrichment:

http://vsr-demo.informatik.tu-chemnitz.de/smartcomposition/

Our demos can be used in any modern web browser without the

installation of plugins or server-side runtime environments. If the

distributed application requires any multi-device synchronization,

a WebSocket server has to be deployed. Unfortunately, not all

technologies we are using are yet implemented in all browsers.

Most of them are still W3C working drafts. By optionally using

the webcomponent.js11 polyfills, SmartComponents are also

enabled in web browsers that lack native support.

4. CONCLUSION
In this paper we demonstrated how to extend the new W3C Web

Components to build SmartComponents with event-based

communication channels and multi-device data exchange

capabilities. We are able to support web developers creating

complex distributed web applications with a high level of reuse.

The core of our approach, Web Components, can be used in any

modern web browser without the installation of additional server-

side or client-side software. Since SmartComponents are custom

elements that become first-class HTML elements, you can

basically add and configure new parts of you web application

directly in your HTML markup. The import is done with only one

line of code. Inserting the content of Web Components into an

adjunct shadow DOM subtree prevents CSS rules and IDs of

elements from conflicting. Our extension of adding WebSocket-

based communication functionality for loosely coupling of

SmartComponents to compose rich web applications experiences

across distributed platforms and between multiple devices.

Further research will address how to provide a repository to store

and distribute reusable SmartComponents. We are also working

on approaches to describe the communication interfaces and topic

names to ensure hassle-free composition of SmartComponents.

5. REFERENCES
[1] Dejan Kovachev, Dominik Renzel, Petru Nicolaescu, István

Koren, and Ralf Klamma. 2014. Direwolf: a framework for

widget-based distributed user interfaces. J. Web Eng. 13, 3-4

(July 2014), 203-222.

[2] Michael Krug, Fabian Wiedemann, and Martin Gaedke.

2014. Enhancing media enrichment by semantic extraction.

In Proceedings of the companion publication of the 23rd

international conference on World wide web companion

(WWW Companion '14). International WWW Conferences

Steering Committee, 111-114. DOI=10.1145/2567948.

[3] Michael Krug, Fabian Wiedemann, and Martin Gaedke.

2014. SmartComposition: A Component-Based Approach for

Creating Multi-screen Mashups. In Web Engineering -

Lecture Notes in Computer Science (ICWE'14), Springer

International Publishing, 236-253. DOI=10.1007/978-3-319-

08245-5_14.

[4] Scott Wilson, Florian Daniel, Uwe Jugel, and Stefano Soi.

2011. Orchestrated User Interface Mashups Using W3C

Widgets. In Proceedings of the 11th international conference

on Current Trends in Web Engineering (ICWE'11),

Springer-Verlag, Berlin, Heidelberg, 49-61.

DOI=10.1007/978-3-642-27997-3_5.

11 http://webcomponents.org/polyfills/

<video-component width="550" height="300">

 <source src="video.mp4" type="video/mp4" />

 <track src="metadata.vtt" kind="metadata" />

</video-component>

<maps-component lat="52" lng="12" width="200"

 height="300"></maps-component>

<wiki-component keyword="Europe" width="600"

 height="300"></wiki-component>

<twitter-component keyword="Europe"

width="400" height="300"></twitter-component>

Listing 4: Web Components used for media enrichment by

visualizing information provided by time-based metadata

210

	1. INTRODUCTION
	2. SMARTCOMPOSITION APPROACH
	3. DEMONSTRATION
	4. CONCLUSION
	5. REFERENCES

